Uses of Class
net.i2p.crypto.eddsa.math.GroupElement
Packages that use GroupElement
Package
Description
   Java implementation of EdDSA, a digital signature scheme using
   a variant of elliptic curve cryptography based on Twisted Edwards curves.
   Data structures that define curves and fields, and
   the mathematical operations on them.
   Specifications for curves and keys, and a table for named curves.
- 
Uses of GroupElement in net.i2p.crypto.eddsa
Methods in net.i2p.crypto.eddsa that return GroupElementModifier and TypeMethodDescriptionEdDSAPrivateKey.getA()EdDSAPublicKey.getA()EdDSAPublicKey.getNegativeA() - 
Uses of GroupElement in net.i2p.crypto.eddsa.math
Fields in net.i2p.crypto.eddsa.math declared as GroupElementModifier and TypeFieldDescription(package private) final GroupElement[]GroupElement.dblPrecmpPrecomputed table fordoubleScalarMultiplyVariableTime(GroupElement, byte[], byte[]), filled if necessary.(package private) final GroupElement[][]GroupElement.precmpPrecomputed table forscalarMultiply(byte[]), filled if necessary.Methods in net.i2p.crypto.eddsa.math that return GroupElementModifier and TypeMethodDescriptionGroupElement.add(GroupElement q) GroupElement addition using the twisted Edwards addition law with extended coordinates (Hisil2008).static GroupElementGroupElement.cached(Curve curve, FieldElement YpX, FieldElement YmX, FieldElement Z, FieldElement T2d) Creates a new group element in CACHED representation.(package private) GroupElementGroupElement.cmov(GroupElement u, int b) Constant-time conditional move.Curve.createPoint(byte[] P, boolean precompute) GroupElement.dbl()Doubles a given group element $p$ in $P^2$ or $P^3$ representation and returns the result in $P \times P$ representation.GroupElement.doubleScalarMultiplyVariableTime(GroupElement A, byte[] a, byte[] b) $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$, $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.Curve.getZero(GroupElement.Representation repr) GroupElement.negate()Negates this group element by subtracting it from the neutral group element.static GroupElementGroupElement.p1p1(Curve curve, FieldElement X, FieldElement Y, FieldElement Z, FieldElement T) Creates a new group element in P1P1 representation.static GroupElementGroupElement.p2(Curve curve, FieldElement X, FieldElement Y, FieldElement Z) Creates a new group element in P2 representation.static GroupElementGroupElement.p3(Curve curve, FieldElement X, FieldElement Y, FieldElement Z, FieldElement T) Creates a new group element in P3 representation, without pre-computation.static GroupElementGroupElement.p3(Curve curve, FieldElement X, FieldElement Y, FieldElement Z, FieldElement T, boolean precomputeDoubleOnly) Creates a new group element in P3 representation, potentially with pre-computation.static GroupElementGroupElement.precomp(Curve curve, FieldElement ypx, FieldElement ymx, FieldElement xy2d) Creates a new group element in PRECOMP representation.GroupElement.scalarMultiply(byte[] a) $h = a * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$ and $B$ is this point.(package private) GroupElementGroupElement.select(int pos, int b) Look up $16^i r_i B$ in the precomputed table.GroupElement.sub(GroupElement q) GroupElement subtraction using the twisted Edwards addition law with extended coordinates (Hisil2008).GroupElement.toCached()Converts the group element to the CACHED representation.GroupElement.toP2()Converts the group element to the P2 representation.GroupElement.toP3()Converts the group element to the P3 representation.GroupElement.toP3PrecomputeDouble()Converts the group element to the P3 representation, with dblPrecmp populated.Methods in net.i2p.crypto.eddsa.math with parameters of type GroupElementModifier and TypeMethodDescriptionGroupElement.add(GroupElement q) GroupElement addition using the twisted Edwards addition law with extended coordinates (Hisil2008).(package private) GroupElementGroupElement.cmov(GroupElement u, int b) Constant-time conditional move.GroupElement.doubleScalarMultiplyVariableTime(GroupElement A, byte[] a, byte[] b) $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$, $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.GroupElement.sub(GroupElement q) GroupElement subtraction using the twisted Edwards addition law with extended coordinates (Hisil2008). - 
Uses of GroupElement in net.i2p.crypto.eddsa.spec
Methods in net.i2p.crypto.eddsa.spec that return GroupElementModifier and TypeMethodDescriptionEdDSAPrivateKeySpec.getA()EdDSAPublicKeySpec.getA()EdDSAParameterSpec.getB()EdDSAPublicKeySpec.getNegativeA()Constructors in net.i2p.crypto.eddsa.spec with parameters of type GroupElementModifierConstructorDescriptionEdDSANamedCurveSpec(String name, Curve curve, String hashAlgo, ScalarOps sc, GroupElement B) EdDSAParameterSpec(Curve curve, String hashAlgo, ScalarOps sc, GroupElement B) EdDSAPrivateKeySpec(byte[] seed, byte[] h, byte[] a, GroupElement A, EdDSAParameterSpec spec) No validation of any parameters other than a.EdDSAPrivateKeySpec(byte[] a, GroupElement A, EdDSAParameterSpec spec) No validation of any parameters other than a.